sábado, 6 de junho de 2020

UM SISTEMA DE ESTRUTURAS, ENERGIAS, FENÔMENOS, ESTADOS E DIMENSOES VARIAM CONFORME  GRANDES MOVIMENTOS E CONFORME O SDCTIE GRACELI.



A QUALIDADE DAS ESTRUTURAS, ENERGIAS, FENÔMENOS, E DIMENSÕES E CATEGORIAS DETERMINAM O UNIVERSO CÓSMICO E QUÂNTICO, FÍSICO E QUÍMICO.




O SDCTIE GRACELI É ATEMPORAL, OU SEJA PODE SE ENCAIXAR EM QUALQUER PARTE DA FÍSICA, QUÍMICA E OUTROS, E INCLUSIVE ALGUNS ALGUMAS TEORIAS E FUNÇÕES QUE AINDA NÃO FORAM FORMULADAS.


QUANDO SE ADICIONA ALGUM TIPO DE ENERGIA EM UM SISTEMA SE MODIFICA TODO SISTEMA DE TRANSFORMAÇÕES, INTERAÇÕES, DINÂMICAS, POTENCIAIS, ESTADOS QUÂNTICOS, ESTADOS DIMENSIONAIS E FENOMÊNICOS TRANSICIONAIS DE GRACELI, E OUTROS, E CONFORME O SDCTIE  GRACELI..

O ESTADO QUÂNTICO DE GRACELI  É RELATIVO POR SER VARIÁVEL AO SISTEMA SDCTIE GRACELI, E É INDETERMINADO PORQUE EM CADA ESTRUTURA, ENERGIA, DIMENSÃO DE GRACELI, CATEGORIA GRACELI SE TEM INTENSIDADES E VARIAÇÕES ESPECÍFICAS, MESMO ESTANDO TODO DENTRO DE UM SISTEMA SÓ, CORPO, OU PARTÍCULA. 


X



⇔  A FÍSICA DIMENSIONAL GRACELI PODE SER UM BRAÇO DA QUÂNTICA, OU MESMO SER UMA RELATIVIDADE FUNDAMENTADA NUMA TERCEIRA QUANTIZAÇÃO DO SDCTIE GRACELI.

ONDE SE VÊ O MUNDO FÍSICO NÃO APENAS POR QUANTUNS DE MATÉRIA, OU RELAÇÕES DE ONDAS E PARTÍCULAS, MAS NUM MUNDO TRANSCENDENTE E DE INTERAÇÕES E TRANSFORMAÇÕES CONFORME O SDCTIE GRACELI.

OU SEJA, O UNIVERSO DECADIMENSIONAL TRANSCENDENTE DE GRACELI, E NÃO APENAS DE QUANTUNS DE ENERGIAS, OU MESMO DE RELAÇÕES DE ONDAS PARTÍCULAS, OU DE INCERTEZAS.


EM QUE SE FUNDAMENTA EM :




TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



paradoxo dos gêmeos, ou paradoxo de Langevin, é um experimento mental envolvendo a dilatação temporal, uma das consequências da Relatividade restrita. Nele, um homem que faz uma viagem ao espaço numa nave de grande velocidade, voltará em casa mais novo que seu gêmeo que ficou em Terra, movendo-se a velocidades cotidianas.

Dilatação temporal[editar | editar código-fonte]

Ver artigo principal: Dilatação do tempo
A Relatividade restrita prevê que, dado um referencial inercial S e um outro referencial inercial S' tal que S' se move com velocidade constante v em relação a S, por meio de uma Transformação de Lorentz entre referenciais, encontramos a relação entre as coordenadas x,y,z e t do sistema S e as coordenadas x',y',z' t' do sistema S' .
Usando a transformação de Lorentz para o tempo, obtemos
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Como v é obrigatoriamente menor que c, temos que, para o corpo em movimento, o tempo corre mais lentamente do que para o corpo em repouso.

Enunciado[editar | editar código-fonte]

Dois gêmeos A e B idênticos, estando o irmão A em uma nave espacial na qual ele viajará a uma velocidade muito próxima de c (velocidade da luz) - enquanto o outro, B, permanece em repouso na Terra. Para B, a nave está se movendo, e por conta disso ele pode afirmar que o tempo está correndo mais lentamente para seu irmão A que está na nave.
Analogamente, A vê a Terra se afastar, pelo que ele pode, da mesma forma, afirmar que o tempo corre mais lentamente para B.

Solução[editar | editar código-fonte]

Em primeiro lugar, o enunciado parte de uma premissa errada. No quadro da relatividade restrita, a simultaneidade de acontecimentos não é garantida entre referenciais movendo-se um em relação ao outro, logo, não faz sentido comparar o correr do tempo para o gêmeo A com o correr do tempo para o gêmeo B sem referir qual o referencial em que essa comparação está a ser feita. Por isso, concluímos que essa teoria é relativamente linear.
O que o gêmeo B pode afirmar é que o tempo corre mais lentamente para o seu irmão A quando medido no seu referencial (de B). Do mesmo modo, o gêmeo A pode afirmar que o tempo corre mais lentamente para o seu irmão B quando medido no seu referencial (de A). A situação dos dois gêmeos é simétrica enquanto cada qual estiver no seu referencial inercial. Lembrando que os efeitos relativísticos são sempre atribuídos ao outro.
Mas existe uma quebra de simetria fundamental no problema: somente o irmão B pode afirmar que esteve todo o tempo em um mesmo referencial inercial, a Terra, enquanto que o irmão A saiu do referencial inercial Terra e foi para um referencial movendo-se a velocidade constante em relação ao primeiro; mais tarde, teve de inverter o sentido do movimento (outra mudança de referencial inercial) e, finalmente, abrandar e regressar ao referencial em que se encontrava à partida (uma terceira mudança de referencial inercial).
Assim, a comparação do correr do tempo pode ser feita no referencial inercial da Terra - que foi onde B sempre esteve e de onde A partiu e chegou - e conclui-se que B é mais velho do que A.
Estas mudanças de referencial inercial implicam uma aceleração, e A, enquanto acelerado, encontra-se num referencial não-inercial.
No gráfico abaixo, a trajetória do gêmeo A é representada pela reta x'=0 até uma distância de 4 anos luz da terra, com metade da velocidade da luz. A partir daí, ele inverte sua velocidade e retorna à terra, o que ocorre após 16 anos no referencial terrestre. Como A esteve em movimento no primeiro trecho da viagem, ele computa um tempo menor (t'=6,93 anos). O mesmo na viagem de volta, portanto no reencontro terá envelhecido 13,86 anos.
Paradoxo dos gêmeos
Mas de seu ponto de vista é B quem se movimentou no primeiro trecho. E portanto computa para esse um tempo menor (t=6 anos). Ao mesmo tempo ele observa que um relógio no ponto de destino, em repouso em relação à terra e previamente sincronizado com esta, mostra 8 anos passados. Do seu ponto de vista portanto os relógios não estão sincronizados, e o que está na terra marca 2 anos a menos. Assim que inverte a velocidade e passa a voltar para a terra, o cálculo dessa diferença de sincronização se altera e o relógio na terra passa a marcar para ele 10 anos. Somando mais 6 anos na viagem de volta, já que a condição é simétrica a de ida, completam-se os mesmos 16 anos decorridos na terra.
Sua alteração de velocidade (aceleração) no momento do retorno afetou a passagem do tempo.[1]

Uma pequena variação no enunciado do paradoxo permite um entendimento mais claro da solução, sem o uso de fórmulas:
Em vez de um dos gêmeos ficar na terra, enquanto o outro viaja, pode-se considerar o caso em que ambos viajam a partir da terra, mas em direções exatamente opostas. Após algum tempo em alta velocidade, ambos mudam de direção e retornam à terra onde se reencontram.
Se para cada um deles, o outro é que se move em alta velocidade, e assim deve envelhecer mais lentamente, quem estará mais jovem no reencontro? Se a resposta for, que pela absoluta simetria da situação, ambos devem ter a mesma idade, isso não contradiz a teoria?
A resposta está em que, se é verdade que pela relatividade restrita, qualquer referencial inercial é válido, também é verdade que uma vez escolhido, os cálculos para toda a viagem devem ser feitos nesse mesmo referencial.
Assim, se escolhermos o referencial do gêmeo Paulo que viaja em direção ao norte celeste, é seu irmão Pedro que está se afastando para o sul em alta velocidade e portanto envelhecendo mais lentamente. Paulo está estacionário em seu referencial. Na segunda etapa da viagem, o retorno à terra, Pedro também está retornando. Como ele tinha ido para o sul celeste, agora na volta está viajando em direção ao norte celeste. Portanto está no mesmo referencial de cálculo usado inicialmente por Paulo (supondo a mesma velocidade em módulo).
Portanto, agora é Paulo que se move a alta velocidade enquanto Pedro está estacionário no referencial de cálculo. E Paulo no retorno envelhece mais lentamente.
Quando chegarem à terra terão a mesma idade, tendo usado corretamente em cada trecho a correção relativística do tempo.[2]

Movimento acelerado[editar | editar código-fonte]

Um grande mito é que não é possível se calcular acelerações na Relatividade Restrita, deixando a solução do paradoxo fora do escopo dessa teoria. No entanto isso não é verdade e é perfeitamente possível calcular o movimento de um corpo acelerado na Relatividade Restrita, permitindo calcular o movimento desse corpo.
Vamos calcular o movimento de uma partícula relativística submetida a um 'movimento uniformemente acelerado', ou seja, a cada instante, no referencial de repouso existe uma aceleração constante na direção , escrita como .
Primeiramente, observamos que no referencial "tangente" de repouso da partícula,
Para descobrir qual o o quadrivetor no referêncial de laboratório, fazemos uma transformação de Lorentz, e portanto:
Sabemos também que , e podemos então chegar a uma equação para a quadrivelocidade
Lembrando que as componentes espaciais do quadrivetor são , e portanto
Lembrando que a particula se desloca na direção  e escolhendo a partícula em repouso em 
Agora é só integrar novamente, e chegamos a
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D








TERCEIRA QUANTIZAÇÃO SDCTIE GRACELI EM:


segunda lei da termodinâmica ou segundo princípio da termodinâmica expressa, de uma forma concisa, que "a quantidade de entropia de qualquer sistema isolado termodinamicamente tende a incrementar-se com o tempo, até alcançar um valor máximo". Mais sensivelmente, quando uma parte de um sistema fechado interage com outra parte, a energia tende a dividir-se por igual, até que o sistema alcance um equilíbrio termodinâmico.
Enquanto a primeira lei da termodinâmica estabelece a conservação de energia em qualquer transformação, a segunda lei estabelece condições para que as transformações termodinâmicas possam ocorrer espontaneamente. Historicamente, a segunda lei foi estabelecida como um conceito empírico, ou seja, um axioma, relacionado com a transformação de calor em trabalho em processos cíclicos. Para que houvesse trabalho líquido no ciclo, deveria haver duas fontes térmicas mantidas a temperaturas diferentes entre si.

Descrição geral[editar | editar código-fonte]

Num sentido geral, a segunda lei da termodinâmica afirma que as diferenças entre sistemas em contato tendem a igualar-se. As diferenças de pressãodensidade e, particularmente, as diferenças de temperatura tendem a equalizar-se. Isto significa que um sistema isolado chegará a alcançar uma temperatura uniforme em todos os pontos. Se houver regiões com diferentes temperaturas e estiverem em contato, haverá a transferência de energia térmica (calor) da região mais quente para a região mais fria. Isso é útil para máquinas que transformam calor (provindo de uma fonte quente) em trabalho (transferência de energia útil). A segunda lei da termodinâmica originou-se historicamente sobre o estudo de eficiência de uma máquina térmica, ou seja, um dispositivo que provê trabalho graças à diferença de temperatura entre dois corpos, transformando calor em trabalho.[1] Dado que qualquer máquina termodinâmica requer uma diferença de temperatura, se deriva que nenhum trabalho útil pode extrair-se de um sistema isolado em equilíbrio térmico, isto é, requererá de alimentação de energia do exterior.
Uma das consequências da segunda lei é o fato pelo qual não se pode criar uma máquina de movimento perpétuo (moto contínuo). Esses achados foram derivados do teorema de Carnot, que imaginou uma máquina térmica de motor perpétuo com eficiência máxima. Assim, o calor devia ser absorvido da fonte quente e transformado em trabalho de forma reversível, e o retorno ao ponto inicial deveria ocorrer com a máquina perdendo energia na forma de calor para uma fonte fria, também de forma reversível. Para que a máquina pudesse ser aquecida ou resfriada ela deveria passar por processos adiabáticos reversíveis. Durante esse processo cíclico, ocorrendo sempre reversivelmente (com a eficiência máxima), a quantidade de trabalho líquido gerado pela máquina sempre seria menor que a quantidade fornecida de calor pela fonte quente, de forma que a eficiência nunca poderia ser igual ou maior que 100%. Para descrever matematicamente esse axioma, mais tarde, Rudolf Clausius propôs uma nova função termodinâmica, entropia, S, cuja variação era igual ao calor reversível (que seria absorvido ou liberado durante a transformação) sobre a temperatura do sistema. Clausius percebeu que a entropia era função de estado (não dependia do caminho percorrido pela transformação), e que ela sempre deveria aumentar para processos espontâneos que ocorressem em sistemas isolados. Para transformações que ocorressem em sistemas abertos, a entropia do universo (sistema + vizinhanças) deveria aumentar até alcançar um valor máximo, quando atingiria o equilíbrio termodinâmico.
Embora essas ideias tenham sido aplicadas primariamente a processos envolvendo a expansão e o aquecimento de gases perfeitos, mais tarde, com a ajuda de Josiah W. Gibbs, adaptou-se a segunda lei da termodinâmica para processos envolvendo mudanças de fases, misturas não ideais, e reações químicas. Posteriormente, os trabalhos de mecânica estatística de Boltzmann e o desenvolvimento da teoria quântica deram um embasamento atômico-molecular para o conceito de entropia, assim como a ideia de espontaneidade envolvida em reações químicas e em mudanças de fases.

Enunciados[editar | editar código-fonte]

Rudolf Clausius
A segunda lei da termodinâmica tem sido expressada de muitas maneiras diferentes. Sucintamente, pode-se expressar assim:
  • É impossível construir um dispositivo que opere, segundo um ciclo, e que não produza outros efeitos, além da transferência de calor de um corpo frio para um corpo quente.[2]
Em outras palavras:
É impossível a construção de um dispositivo que, por si só, isto é, sem intervenção do meio exterior, consiga transferir calor de um corpo para outro de temperatura mais elevada
Enunciado de Clausius.
Deste enunciado, pode-se estabelecer a impossibilidade do "refrigerador ideal". Assim, todo aparato refrigerador, para retirar calor de um ambiente, produzirá mais calor externamente.
  • É impossível construir um dispositivo que opere num ciclo termodinâmico e que não produza outros efeitos além do levantamento de um peso e troca de calor com um único reservatório térmico.[3]
Em outras palavras:
É impossível a construção de um dispositivo que, por si só, isto é, sem intervenção do meio exterior, consiga transformar integralmente em trabalho o calor absorvido de uma fonte a uma dada temperatura uniforme.
Enunciado de Kelvin-Planck.
Deste enunciado, tem-se como consequência a impossibilidade do "motor ideal". Toda a máquina produzirá energia a ser utilizada com desperdício de parte desta em calor a ser perdido. Disto, já era citado por Carnot (Nicolas Léonard Sadi Carnot - físico francês 1796 - 1832): Para transformar calor em energia cinética, utiliza-se uma máquina térmica, porém esta não é 100% eficiente na conversão.
Alguns autores chamam tal enunciado como "postulado" de Kelvin e assim o descrevem: Nenhum processo é possível onde o único resultado é a absorção de calor de um reservatório e sua conversão completa em trabalho.
Destas definições pode-se associar também o enunciado de Carnot: Para que uma máquina térmica realize trabalho são necessárias duas fontes térmicas de diferentes temperaturas.

Visualizações da segunda lei[editar | editar código-fonte]

Graficamente se pode expressar imaginando uma caldeira de um barco a vapor. Esta não poderia produzir trabalho se não fosse porque o vapor se encontra a temperaturas e pressão elevadas comparados com o meio que a rodeia.
Uma outra maneira de ver a segunda lei é pela observação da sua relevância. A primeira lei é na verdade, um princípio de contabilidade de energia: as parcelas de energia devem ser somadas. Ou seja, a primeira lei trata das quantidades de energia. A segunda lei, entretanto, ao dizer que energia cinética (por exemplo) pode ser integralmente transformada em energia térmica (calor) mas não ao contrário, indica uma qualidade para a energia:
Exemplarmente, pode-se imaginar um automóvel a 50 km/h. Ele é subitamente freado. Toda a sua energia cinética será eventualmente transformada em energia interna das pastilhas de freio (e outras fontes de atrito) que se aquecerão. Finalmente, uma certa quantidade de calor será transferida para o meio ambiente. Entretanto, se eu ceder esta mesma quantidade de calor ao automóvel (ou ao freio), ele não sairá do lugar.
Tais questões de eficiência, tem profundas implicações no projeto de máquinas, equipamentos e diversos processos industriais.[4]

Equacionamento[editar | editar código-fonte]

Matematicamente, expressa-se assim:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde S é a entropia, dt é o infinitésimo de tempo e o símbolo de igualdade só existe quando a entropia se encontra em seu valor máximo (em equilíbrio).
Outra maneira mais simples de expressar a segunda lei é: entropia de um sistema isolado nunca decresce. Mas é uma má interpretação comum que a segunda lei indica que a entropia de um sistema jamais decresce. Realmente, indica só uma tendência, isto é, só indica que é extremamente improvável que a entropia de um sistema fechado decresça em um instante dado.
Como a entropia está relacionada ao número de configurações de mesma energia que um dado sistema pode possuir, podemos nos valer do conceito subjetivo de desordem para facilitar a compreensão da segunda lei (embora entropia não seja essencialmente desordem[5]). Ou seja, a segunda lei afirma, à grosso modo, que a desordem de um sistema isolado só pode crescer ou permanecer igual.

Citações[editar | editar código-fonte]

A lei que afirma que a entropia cresce — a segunda lei da termodinâmica tem, segundo o meu pensamento, a posição suprema entre as leis da natureza. Se alguém insistir que a sua teoria preferida do Universo está em desacordo com as equações de Maxwell — então tanto pior para as equações de Maxwell. Se elas contradisserem a observação — bem, essas experiências às vezes dão errado. Mas se a sua teoria está em oposição à segunda lei da termodinâmica, então não posso lhe dar esperança alguma: não há nada a esperar dela, senão cair na maior humilhação.[6]
Isaac Asimov explica a tendência da entropia crescente e suas consequências de uma forma simples:
A Segunda Lei da Termodinâmica afirma que a quantidade de trabalho útil que você pode obter a partir da energia do universo está constantemente diminuindo. Se você tem uma grande porção de energia em um lugar, uma alta intensidade dela, você tem uma alta temperatura aqui e uma baixa temperatura lá, então você pode obter trabalho dessa situação. Quanto menor for a diferença de temperatura, menos trabalho você pode obter. Então, de acordo com a Segunda Lei da Termodinâmica, há sempre uma tendência para as áreas quentes se resfriarem e as áreas frias se aquecerem - assim cada vez menos trabalho poderá ser obtido. Até que finalmente, quando tudo estiver numa mesma temperatura, você não poderá mais obter nenhum trabalho disso, mesmo que toda a energia continue lá. E isso é verdade para TUDO em geral, em todo o universo. (Em The Origin of the Universe em ORIGINS: How the World Came to Be, série em vídeo, Eden Communications, EUA, 1983.)

Questões específicas[editar | editar código-fonte]

Entropia em mecânica estatística[editar | editar código-fonte]

Se para um sistema de partículas em equilíbrio térmico se conhece a função de partição Z, dada pelos métodos da mecânica estatística clássica se pode calcular a entropia mediante:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Onde kB é a constante de BoltzmannT a temperatura e as probabilidades Pj que aparecem no somatório vêm dadas pela temperatura e a energia dos microníveis de energia do sistema:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Entropia de Von Neumann na mecânica quântica[editar | editar código-fonte]

No século XIX o conceito de entropia foi aplicado a sistemas formados por muitas partículas que se comportam classicamente, em princípios do século XX Von Neumann generalizou o conceito de entropia para sistemas de partículas quânticas, definindo para um estado mescla caracterizado por uma matriz densidade ρ a entropia quântica de Von Neumann como a magnitude escalar:

Entropia generalizada em relatividade geral[editar | editar código-fonte]

O intento de estender a análise termodinâmica convencional ao universo inteiro levou a se examinar em princípios dos anos 70 o comportamento termodinâmico de estruturas como os buracos negros. O resultado preliminar desta análise revelou algo muito interessante, que a segunda lei tal como havia sido formulada convencionalmente para sistemas clássicos e quânticos poderia ser violada em presença de buracos negros.
Entretanto, os trabalhos de Jacob D. Bekenstein sobre teoria da informação e buracos negros sugeriram que a segunda lei seguiria sendo válida se fosse introduzida uma entropia generalizada (Sgen) que somada à entropia convencional (Sconv), a entropia atribuível aos buracos negros que depende da área total (A) de buracos negros no universo.
Concretamente esta entropia generalizada deve definir-se como:
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Onde, k é a constante de Boltzmannc é a velocidade da luzG é a constante de gravitação universal e  é a constante de Planck racionalizada.

Entropia na cosmologia[editar | editar código-fonte]

Em cosmologia, na evolução do universo no tempo verifica-se uma diminuição da quantidade de energia disponível para a realização de trabalho. Tal implica uma limitação no tempo da existência do universo tal como se apresenta, pois o sentido natural das mudanças da natureza é o que origina uma diminuição da qualidade da energia. Teoricamente, o universo seria o único sistema realmente isolado, e como tal, nele, a quantidade de energia útil nunca aumenta.[7]
Tal questão tem profundas implicações em filosofia no tratamento do que chamamos tempo em física[8] e num entendimento do universo com este como uma de suas dimensões e neste em sua história e evolução, implicando difíceis tratamentos no que sejam os modelos cíclicos, entre estes o modelo de universo oscilante ou "grande rebote (big bounce)".[9]

A segunda lei da termodinâmica e o criacionismo[editar | editar código-fonte]

Tais conceitos tem trazido algumas distorções desta teorização, principalmente por alguns defensores do criacionismo a respeito dos seres vivos e de sua evolução.[10][11][12][13][14]

A afirmação criacionista[editar | editar código-fonte]

A afirmação dos criacionistas mais fervorosos é que o Universo tenderia obrigatoriamente da ordem à desordem, do mais complexo ao mais simples, tornando a origem química da vida (biopoese), o processo evolutivo dos seres vivos, sua formação e regeneração de tecidos a partir da alimentação (como a síntese de proteínas ou a formação de glicose), sua reprodução, a formação de cristais e até a agregação dos corpos celestes, impossível.[15][16][17]
Criacionistas mais criteriosos tentam demonstrar através da segunda lei da termodinâmica que a diminuição da entropia estaria condicionada a uma interferência externa aos sistemas físicos, e isto abriria a possibilidade dessa interferência ser intencional e planejada por uma entidade inteligente (o que os aproximaria dos defensores do chamado "Design Inteligente"), que supostamente corresponderia a uma divindade, denominável como "Deus". Filosoficamente, o argumento seria válido, porém, não se situaria no campo científico, pois seria uma hipótese não falseável. Contudo, a afirmação contrária, isto é, que Deus não criou também foge do escopo da ciência.